Soil Health Assessment Properties to be	e monitored as part of the Clir	mate-Beneficial Vinevard Management	Practices for the North Coast Area Project

Soil Property	Process type		be	Polotionship to Soil Drossess	Creatic Laboratory, Dracadura*
	Physical	Chemical	Biological	Relationship to soil Processes	Specific Laboratory Procedure
Texture- % of sand, silt, clay,	~			Inherent soil property that influences the potential to store organic matter and nutrients, form stable aggregates,	Hydrometer method, following gravel
gravel content				retain/infiltrate/drain water. *	removal with 2 mm seive
Aggregate stability-% of				Influences water infiltration and oxygen movement into soil. Changes relatively rapidly with soil management changes	Wet aggregate stability, first sieve for
aggregates stable to	\checkmark		\checkmark	because of the role of living organisms in soil aggregation (e.g. fungal hyphae, earthworm casts, bacterial compounds	aggregates/particles between 0.25 and 2
simulated rain				stabilize aggregates). ★ ★	mm
pH- measure of soil reaction		~		Influences nutrient availability, soil biology, and plant health. ★ ★ See under standard nutrient analysis	Soil pH
(acid, neutral, basic)					
Phosphorus		~		Important plant macronutrient. Deficiency is uncommon for grape vines, but if present will significantly affect yield. Retained in soil on clays and soil organic matter. * See under standard nutrient analysis	PO ₄ ⁻ -P following Mehlich 3 extraction
Potassium (K), Calcium (Ca),				These elements are important plant macronutrients. A low Ca:Mg ratio is harmful to vine health and productivity, is often	K, Ca, and Mg following Mehlich 3
Magnesium (Mg)		✓		associate with K deficiency, and is found in serpentine-influenced soils.	extraction
Cation exchange capacity				Cation exchange sites are on clay particles and organic matter. They are an important storage site for nutrients such as K,	Calculation based on Mehlich 3 extraction
(CEC)		v		Ca, and Mg.	of K, Ca, Mg
Total organic carbon (TOC)-				TOC is highly correlated with total SOM measured as weight loss on ignition. SOM includes everything from living	Dry combustion of solid for total C
the carbon contained in soil				organisms, to plant residues, to humus (highly decomposed, amorphous organic compounds). Organic matter is a source	
organic matter (SOM)		✓	\checkmark	of nutrients and improves soil structure and water-holding capacity. Storing greater amounts of C in soil (C sequestration),	
				is an important mechanism for reducing atmospheric carbon dioxide levels and mitigating climate change. * * See under	
				organic matter	
Active organic carbon-				Active organic matter is recently added organic materials that are the main energy source for soil microbes. Measures of	Active carbon- C that reacts with
measured by permanganate		\checkmark	\checkmark	it, such as permanganate oxidizable carbon, have been found to change more rapidly than total organic carbon following	permanganate
oxidation.				changes in soil management, and to be more highly correlated with microbial biomass. ★ See under Reactive Carbon ★ See	
Total nitrogen				Approximately 98% of total soil nitrogen is in organic form. Therefore this measure and the TOC: Total N ratio are	Dry combustion of solid for total N
Total Introgen		~	\checkmark	indicators of a soil's ability to supply plant available mineral N.	
Potentially mineralizable				PMN is another indicator of a soil's N supply capacity. It is derived from microbial decomposition of organic materials,	Potentially mineralizable nitrogen- The
nitrogen- the amount of			1	which releases mineral nitrogen. ★ ★	increase in NO ₃ ⁻ -N following 28 day
organic N converted to plant			•		aerobic incubation under standard
available mineral forms					conditions
OPTIONAL TESTS					
Bulk density- the weight of				Bulk density increases with soil compaction, so it indicates the potential for healthy root growth, and water and air	See "Sampling Soils for a Soil Health
dry soil per volume	\checkmark			movement in soil. B.D. is used to convert properties measured on a weight basis (e.g. the % by weight of organic C) to a	Assessment in Vineyards" for protocols.
				volume or area basis. ★	
Water infiltration- rate of				Rapid water infiltration is vital to capture rainfall and prevent surface run-off and erosion during high intensity events. It is	See "Sampling Soils for a Soil Health
water entry into soil at field	\checkmark			promoted by the presence of plant cover and root channels, by higher SOM, and by stable soil aggregates. *	Assessment in Vineyards" for protocols.
capacity water content					
Compaction-loss of soil				Compaction occurs due to traffic during times when soil is wet and/or with heavy equipment and loads. It restricts root	See "Sampling Soils for a Soil Health
porosity or "densification",				growth and therefore diminishes plant productivity, and it slows water movement through the soil profile. * See under	Assessment in Vineyards" for protocols.
measured as resistance	\checkmark			surface and subsurface hardness	
using penetrometer with					
conical tip					

*Detailed procedures in "Oregon State University - Central Analytical Laboratory - Standard Operating Procedures 2017"

* Find more information in the USDA/ NRCS Soil Quality Indicator Sheets at: <u>https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/health/assessment/?cid=stelprdb1237387</u>

★ Find more information in the Cornell Soil Health Manual at: <u>https://soilhealth.cals.cornell.edu/training-manual/</u>