Typical Design of a Non-fish Bearing Culverted Stream Crossing

Existing

1. Culvert not placed at channel grade.
2. Culvert does not extend past base of fill.

Upgraded

1. Culvert not placed at channel grade.
2. Downspout added to extend outlet past road fill.

Upgraded (preferred)

1. Culvert placed at channel grade.
2. Culvert inlet and outlet rest on, or partially in, the original streambed.

Excavation in preparation for upgrading culverted crossing

- Road tread
- Original channel
- Road fill
- Culvert
- Old culvert
- Excavation to original stream bed

Upgraded stream crossing culvert installation

- Road tread
- Critical dip axis over down road hingeline
- Old culvert
- Excavation to original stream bed
- Rock free soil or gravel
- Culvert
- Backfill compacted in 0.5 to 1 foot lifts
- Hingeline
- 1/3 culvert dia. (min)

Note:

Road upgrading tasks typically include upgrading stream crossings by installing larger culverts and inlet protection (trash barriers) to prevent plugging. Culvert sizing for the 100-year peak storm flow should be determined by both field observation and calculations using a procedure such as the Rational Formula.

Stream crossing culvert Installation

1. Culverts shall be aligned with natural stream channels to ensure proper function, and prevent bank erosion and plugging by debris.
2. Culverts shall be placed at the base of the fill and the grade of the original streambed, or downspouted past the base of the fill.
3. Culverts shall be set slightly below the original stream grade so that the water drops several inches as it enters the pipe.
4. To allow for sagging after burial, a camber shall be between 1.5 to 3 inch per 10 feet culvert pipe length.
5. Backfill material shall be free of rocks, limbs or other debris that could dent or puncture the pipe or allow water to seep around pipe.
6. Backfill material shall be free of rocks, limbs or other debris that could dent or puncture the pipe or allow water to seep around pipe.
7. First one end then the other end of the culvert shall be covered and secured. The center is covered last.
8. Backfill material shall be tamped and compacted throughout the entire process:
 - Base and side wall material will be compacted before the pipe is placed in its bed.
 - Backfill compacting will be done in 0.5 - 1 foot lifts until 1/3 of the diameter of the culvert has been covered. A gas powered tamper can be used for this work.
9. Inlets and outlets shall be armored with rock or mulched and seeded with grass as needed.
10. Trash protectors shall be installed just upstream from the culvert where there is a hazard of floating debris plugging the culvert.
11. Layers of fill will be pushed over the crossing until the final designed road grade is achieved, at a minimum of 1/3 to 1/2 the culvert diameter.

Erosion control measures for culvert replacement

Both mechanical and vegetative measures will be employed to minimize accelerated erosion from stream crossing and ditch relief culvert upgrading. Erosion control measures implemented will be evaluated on a site by site basis. Erosion control measures include but are not limited to:

1. Minimizing soil exposure by limiting excavation areas and heavy equipment disturbance.
2. Installing filter windrows of slash at the base of the road fill to minimize the movement of eroded soil to downslope areas and stream channels.
3. Retaining rooted trees and shrubs at the base of the fill as “anchor” for the fill and filter windrows.
4. Bare slopes created by construction operations will be protected until vegetation can stabilize the surface. Surface erosion on exposed cuts and fills will be minimized by mulching, seeding, planting, compacting, armorng, and/or benching prior to the first rains.
5. Excess or unusable soil will be stored in long term spoil disposal locations that are not limited by factors such as excessive moisture, steep slopes greater than 10%, archeology potential, or proximity to a watercourse.
6. On running streams, water will be pumped or diverted past the crossing and into the downstream channel during the construction process.
7. Straw bales and/or silt fencing will be employed where necessary to control runoff within the construction zone.

Pacific Watershed Associates Inc.
Geologic and Geomorphic Studies • Watershed Restoration • Wildland Hydrology • Erosion Control • Environmental Services
PO Box 4433, Arcata, CA 95518 / Ph: 707-839-5130 / FAX: 707-839-8168 / www.pacificwatershed.com